Central to our research program is the discovery of new reactivities and guiding principles for the synthesis of complex molecules. We are especially attracted to problems encountered at the frontiers of organic synthesis, where the development of new solutions and approaches is highly desirable and necessary.
Research
Dearomative Strategies
One of such areas in our group are dearomatization reactions – transformation capable of overcoming aromaticity and providing unsaturated and functionalized products. We have recently reported a novel dearomative strategy based on visible-light mediated [4+2] cycloadditions between arenes and arenophiles
The underlying principle of arenophile-based dearomatizations is that arenophiles can be seen as an isolation of two p-bonds in the aromatic starting material via formation of the bicyclic intermediate, which are amenable to further olefin-type transformations or transition-metal catalysis
Synthetic utility of our methodology
High-Throughput Experimentation
The interplay of the reaction parameters is responsible for the success of the chemical process. Moreover, finding the key combination of parameters is often a bottleneck of reaction development. High-Throughput Experimentation (HTE) is an approach to find the appropriate combination of parameters by conducting numerous arrayed experiments with the purpose of evaluating as many possible combinations of parameters as possible. While in chemistry this technique received ubiquitous recognition in industrial settings, the usage of this technique in academic laboratories is at the early stages of adoption.
The Sarlah group has begun to implement HTE approaches in both the reaction optimization and reaction discovery to train the next generation of chemists fully capable of using the state-of-the-art data-rich experimentation to solve their routine problems.
Improvement of pharmacokinetic properties of isocarbostyril alkaloids
Total synthesis of natural products from genome-based identification
The genome sequencing revolution revealed that >90% of natural products remain to be discovered. Thus, our group has recently initiated several collaborations to embark on synthesis of natural products that are identified by biosynthetic genes for complex molecule synthesis in bacteria and other organisms. Given the medical importance of natural products, as well as the ever-increasing access to genome sequences, we employ a combination of chemical and biological approaches to identify, characterize, and prepared novel natural chemotypes.