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Not covered:
Evaluation of molecular complexity

Artificial 
Intelligence

Machine 
Learning

Deep Learning

Artificial intelligence (AI) can be described as the effort to automate intellectual
tasks normally performed by humans, which has four main views in literatures:
‘acting humanly’, ‘thinking humanly’, ‘thinking rationally’, ‘acting rationally’.

Machine learning (ML) focuses on the use of data and algorithms to imitate
the way that humans learn, gradually improving its accuracy. ML systems are
trained, rather than explicitly programmed.

Answers Data Rules

Machine Learning 

Classical Programming

Artificial Intelligence, Machine Learning and Deep Learning

Rules Data Answers

Useful Papers:

Szymkuć, S.; Gajewska, E. P.; Klucznik, T.; Molga, K.; Dittwald, P.; Startek, M.; Bajczyk, M.; 
Grzybowski, B. A., Angew. Chem. Int. Ed. 2016, 55, 5904. 

https://doi.org/https://doi.org/10.1002/anie.201506101

Coley, C. W.; Green, W. H.; Jensen, K. F., Acc. Chem. Res. 2018, 51, 1281. 
https://doi.org/10.1021/acs.accounts.8b00087

Molga, K.; Szymkuć, S.; Grzybowski, B. A., Acc. Chem. Res. 2021, 54, 1094. 
https://doi.org/10.1021/acs.accounts.0c00714
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Deep Learning and Neural NetworksNo Free Lunch Theorem (NFL)

All optimization algorithms perform equally well when their performance is
averaged across all possible problems. There is no single best optimization
algorithm.

It also implies that there is no single best machine learning algorithm for
predictive modeling problems.

(One classification of) types of machine learning problems

Supervised Learning (e.g. Classification):

Unsupervised Learning (e.g. Clustering)

Reinforcement Learning (e.g. AlphaGo)

Model

Model
Input Layer Output LayerHidden Layers

Depth

In deep learning, these layered representations are learned via models called 
neural networks

Chollet, François. Deep Learning with Python, Second Edition Manning Publications Co. 2021 
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Why Deep Learning

Patil, Ronil. Is there any need of Deep Learning? Analytic Vidhya, 2021
https://www.analyticsvidhya.com/blog/2021/05/is-there-any-need-of-deep-learning/

Hornik, K.; Stinchcombe, M.; White, H., Neural Networks 1989, 2, 359. 
https://doi.org/10.1016/0893-6080(89)90020-8

Deep Learning out perform other techniques if the data size is large.

The requirement of high end infrastructure for deep learning models to be
trained in reasonable time can be satisfied.

Deep Learning is good at complex problems such as image classification,
natural language processing, and speech recognition. By increasing the
number of layers and neurons, neural networks can approximate almost any
functions.

General Workflow of Machine Learning

1. Define the task
2. Develop a model

- Prepare data
- Choose the evaluation protocol: validations
- Find and beat a base line
- Develop a model that overfits, then tune the model

3. Deploy the model

Validation and Testing

Jorner, K.; Tomberg, A.; Bauer, C.; Sköld, C.; Norrby, P.-O., Nat. Rev. Chem. 2021, 5, 240. 
https://doi.org/10.1038/s41570-021-00260-x

Kumar, Ajitesh. Hold-out Method for Training Machine Learning Models, Data Analytics,2022
https://vitalflux.com/hold-out-method-for-training-machine-learning-model/

Representation of Molecules for Machine Learning
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Molecular Graphs

Text-based Representations: Simplified Molecular-Input Line Entry System 
(SMILES)

1. Atoms indicated by atomic symbols (aromatic rings lower case)
2. Inorganic elements are enclosed by brackets (as are formal charges)
3. Bonds represented by -,=,#, and : (single, double, triple, and aromatic);
single and aromatic bonds are conventionally omitted
4. Branches are specified by enclosures in parentheses
5. Cyclic structures are indicated by breaking one bond in each ring and
designating the point of opening/closure with a digit

Weininger, D., J. Chem. Inf. Comput. Sci. 1988, 28, 31. https://doi.org/10.1021/ci00057a005

Weininger, D.; Weininger, A.; Weininger, J. L., J. Chem. Inf. Comput. Sci.1989, 29, 97. 
https://doi.org/10.1021/ci00062a008

O=C=O C(=O)=O

SMILES is not canonical

SMILES Arbitrary Target Specification (SMARTS) for Chemical Patterns

E.g. [c,n;H1] either aromatic carbon or nitrogen and exactly one hydrogen

Tokenization and One-Hot Encoding

Webb, M. A.; Jackson, N. E.; Gil, P. S.; de Pablo, J. J., Sci. Adv. 2020, 6, eabc6216. 
https://doi.org/doi:10.1126/sciadv.abc6216
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Extended Connectivity Fingerprints (ECFP)

Morgan, H. L., J. Chem. Doc. 1965, 5, 107. https://doi.org/10.1021/c160017a018
1Rogers, D.; Hahn, M., J. Chem. Inf. Model.2010, 50, 742. https://doi.org/10.1021/ci100050t

Basic Algorithm

1. Assign each atom an identifier
2. Iteratively update identifier based on neighboring atoms
3. Remove/count duplicates
4. Fold identifiers into an N-bit vector

1

2

3

4
5

Number of nearest-neighbor heavy atoms
Atomic number
Atomic mass
Atomic charge
Number of attached hydrogens
Whether atom is part of a ring

Atom 2: hash([3, 8, 16, 0, 0, 0]) -> a unique integer identifier
E.g.
1: -9097421984
2: 5420398560
3: 1128765390
4: -0979365278
5: 2897025579

Neighbor information of atom 2:
[(1, -9097421984), (1, 1128765390), (1,  - 0979365278), (2, 2897025579)]

Then HASH it again, we get:

2: 12674839301029 (neighboring atoms information included)

Do the operations above iteratively, then initialize a zeros vector of a specific 
length and divide each identifier by the vector length and obtain the remainder. 
Use the remainder to set the fingerprint element to 1 or 0.

Descriptor (Feature) Vectors

Advantages: easy to generate, analogous to functional groups, flexible, robust
Disadvantages: no 3D information, not scalable to massive chemical spaces

E.g. Some physiochemical features:

No.  of X structure,…
log P,  ASA, shape parameters, …
dipole moment, polarizability, …
electronic energy, Δhf, IP, εgap, …
simulation-derived quantities
experimental measurements

https://www.rdkit.org/

𝑨,𝑩
𝑨 𝑩

𝑨 𝑨 𝑩 𝑩 𝑨 𝑩

Tanimoto similarity: is a metric for computing the inner product of two 
molecular fingerprint vectors. It is by far the most common similarity metric 
used.

Mathematically, SA,B is the ratio of the intersection of A and B over the union 
of A and B.



Many other Computer-Assisted Synthesis Planning Attempts

SECS (Wipke, 1976); 
SYNCHEM (Gelernter, 1977); 
SYNLMA (Johnson, 1989); 
SYNGEN (Hendrickson, 1989); 
CHIRON (Hanessian, 1990); 
IGOR (Ugi, 1993); 
WODCA (Gasteiger, 1995)

Too simplified rule sets
Incompatible synthetic routes
Limited computing power
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Corey, E. J.; Long, A. K.; Rubenstein, S. D., Science 1985, 228, 408. 
https://doi.org/doi:10.1126/science.3838594

Machine Learning for Synthesis Planning

Logic and Heuristics Applied to Synthetic Analysis (Corey, 1985)

Expert system, aka “LHASA”, from OCSS (1969)
Database: ~1100 reactions (in 1985) -> 2100+ reactions
Step-by-step, iterative analysis with chemist

Analyzes and plans synthesis route based on logics

1. Transform-based strategies

2. Structure-goal strategies
Recognition of potential starting materials and building block.

3. Topological strategies
Identification of disconnections that can lead to major molecular simplification.

4. Stereochemical strategies
Analysis of the stereochemistry of substrates and application of stereospecific
transformations

5. Functional group-oriented strategies
Reaction cascade, FGI, protection/deprotection

Chematica / Synthia (Grzybowski, 2012 / Merck, 2017 – Present)

Input 
Structure

Features 
Recognition 

Transformation 
Evaluation

Retrosynthetic
Analysis

Output 
Results

Expert system -> Hybrid expert–NN system
Database: >100,000 reactions (in 2020)
Close-source, commercial

Kowalik, M.; Gothard, C. M.; Drews, A. M.; Gothard, N. A.; Weckiewicz, A.; Fuller, P. E.; 
Grzybowski, B. A.; Bishop, K. J. M., Angew. Chem. Int. Ed. 2012, 51, 7928. 

https://doi.org/10.1002/anie.201202209

Szymkuć, S.; Gajewska, E. P.; Klucznik, T.; Molga, K.; Dittwald, P.; Startek, M.; Bajczyk, M.; 
Grzybowski, B. A., Angew. Chem. Int. Ed. 2016, 55, 5904. 

https://doi.org/10.1002/anie.201506101

How does synthetic design differ from other problems, like playing
chess or Rubik's cube?

1. Much larger number of moves/rules
2. Applicability of rules is very context-dependent
3. Current “position” cannot be used to systematically plan future moves
4. Revertive search over the transformation space for global optima

An implementation of The Logic of Chemical Synthesis

Todd, M. H., Chem. Soc. Rev. 2005, 34, 247. https://doi.org/10.1039/B104620A
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Chematica / Synthia (Grzybowski, 2012 / Merck, 2017 – Present)

Representation of Transformations

Network of Organic Chemistry (NOC)

Petri Network Representation

Search Algorithm

Breadth-first search (BFS) and 
pre-calculated intermediates

Metrics: yield, cost, popularity

E.g.: Popularity-defined optimality will give routes based on robust chemistries

Synthesis Planning under Restrictions

Red: Only one product
Green: no regulated substances
Pink: transformations after 1998
Blue: high labor-to-chemical cost ratio
Greenish-yellow: blue + no regulated 
substances
Grey-brownish: excluding few substances 
(benzaldehyde, 3-chlorobenzophenone and 
3 methylbenzophenone)

Yellow: regulated substances

Szymkuć, S.; Gajewska, E. P.; Klucznik, T.; Molga, K.; Dittwald, P.; Startek, M.; Bajczyk, M.; 
Grzybowski, B. A., Angew. Chem. Int. Ed. 2016, 55, 5904. 

https://doi.org/10.1002/anie.201506101

1

42

7 9

An Example of BFS:
Search Order : 1->2->4->7->9

Pre-calculatedA Given Target
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Chematica / Synthia (Grzybowski, 2012 / Merck, 2017 – Present)

Example: Proline-catalyzed Mannich reaction as coded

Badowski, T.; Gajewska, E. P.; Molga, K.; Grzybowski, B. A., 
Angew. Chem. Int. Ed. 2020, 59, 725. https://doi.org/10.1002/anie.201912083

Development of Hybrid Expert-NN System

Instytut Chemii Organicznej (ICHO / ICHO+); Semi-supervised learning-like

Input X: 
(ICHO) concatenated Morgan fingerprints of a reaction and of its product
(ICHO+) chemically intuitive reaction characteristics (e.g. num. of ring 
construction/destruction)

Input Y: 1 if a given conflict-free, expert reaction producing a given target is 
also present in our literature collection, and 0 otherwise.

Red arrows (1): reported in 
the collection and following 
Chematica’s reaction rules 

Grey arrows (0): not reported 
in the collection but following 
Chematica’s other reaction 
rules

Sigmoidal Function:

Data source: reported reactions from journals and patents

Data Filtration: 
1. No protection/deprotection reactions
2. Matches at least one of Chematica’s 75000 expert-coded reaction rules 

Literature collection:  85 million conflict-free and high-chemical quality 
reactions leading to our 1.4 million products

1. How many times an expert reaction rule with a given reaction fingerprint 
occurred in the literature collection
2. How many times it matched product molecules from this collection

The ratio of the answers of this two questions is the Synthetic Popularity: 

E.g. If an expert reaction fitted ten product molecules and this reaction type 
was observed in published reactions also ten times, the NN can learn that this 
reaction rule should be applied whenever it fits the product of interest.
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Chematica / Synthia (Grzybowski, 2012 / Merck, 2017 – Present)

Development of Hybrid Expert-NN System

It can predict non-zero probabilities even for reactions of types not seen in the literature collection during training.

Badowski, T.; Gajewska, E. P.; Molga, K.; Grzybowski, B. A., Angew. Chem. Int. Ed. 2020, 59, 725. https://doi.org/10.1002/anie.201912083

Performance Comparisons with other Models

SW2+: model by Segler and Waller, 2018

SMALLER: model that prefer shorter SMILES strings of starting materials. Sum((length of SMILES)3 for all starting materials) in this case

ICHO+ SW2+ SMALLER

Values in the 
Table:

The experimental 
condition is the 

<value>-best 
prediction

Step 1 1 1 3

Step 2 1 1 24

Step 3 2 31 1

Step 4 2 1 10

Step 5 1 1 2

Step 6 8 1 26

Average 2.5 6 11
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Chematica / Synthia (Grzybowski, 2012 / Merck, 2017 – Present)

Chematica for Total Synthesis

Mikulak-Klucznik, B.; Gołębiowska, P.; Bayly, A. A.; Popik, O.; Klucznik, T.; Szymkuć, S.; Gajewska, E. P.; Dittwald, P.; Staszewska-Krajewska, O.; Beker, W.; Badowski, T.; Scheidt, K. A.; Molga, K.; 
Mlynarski, J.; Mrksich, M.; Grzybowski, B. A., Nature 2020, 588, 83. https://doi.org/10.1038/s41586-020-2855-y

N
Me

OH

Me

N

MeO

MeO

OMe

OMe

OH

OH

8 steps in total

(–)-dauricine
4% over 8 LLS

Another Two Verified Routes
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3N-MCTS (Waller, 2018)

Deep Neural Network System & Monte Carlo tree search

Database: 12.4 million single-step reactions from Reaxys

Monte Carlo Tree Search (MCTS)

Segler, M. H. S.; Preuss, M.; Waller, M. P., Nature 2018, 555, 604. 
https://doi.org/10.1038/nature25978

Selection Expansion Rollout Update

Selection: choose the most promising position
Expansion: add new nodes by expansion procedure (N1 and N2)
Rollout : pick & evaluate the performance of new nodes (N3, MCTS)
Update: incorporate the position evaluation into the route

Expansion Procedure

Target 
Structure

Policy 
Network

Possible
Transformations

The best k 
transformations

Possibility
Evaluation

admissible actions and 
positions

Development of Expansion and Rollout Policy Networks

More data for find the candidates and less data for estimation

Expansion Policy Network: predict possible disconnections

Expansion rules: only the reaction centers was extracted. Rules occurring at 
least three times were kept. (301,671 rules) 

Input X: structure of products
Input Y: structure of starting materials

Training set: reactions before 2015; Test set: reactions after 2015

Prediction Accuracy:
Top 1: 31%, Top 10: 63.3%, Top 50: 72.5% (max searching number)

Rollout Policy Network: evaluation  

Rollout rules: contain the atoms and bonds that changed in the reaction 
centers and the first-degree neighboring atoms. Only rules that occurred at 
least 50 times in reactions published before 2015 were kept. (17,134 rules)

Development of Filter Network

Data Augmentation (100 million negative reaction generated): 
1. Generated hypothetical products as negative results 
2. Shuffling product-reaction pair

False positive: 1.5%, false negative 14%

Model Performance Evaluation

Double-blind AB-test, with 45 graduate-level organic chemists:
1. Chemists did not significantly prefer the literature route over our program’s 
route 
2. Chemists significantly preferred routes found by 3N-MCTS over routes 
generated by heuristic BFS without a policy network and an in-scope filter.
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3N-MCTS (Waller, 2018)

Model Performance Evaluation

Segler, M. H. S.; Preuss, M.; Waller, M. P., Nature 2018, 555, 604. 
https://doi.org/10.1038/nature25978

3N-MCTS versus literature routes

Right: preference ratio of 3N-MCTS

Below: comparison between proposed and reported routes

Blue: Route proposed by 3N-MCTS
Red: Route in literature
Green: Overlap of proposed route and literature
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3N-MCTS (Waller, 2018)

Model Performance Evaluation

Segler, M. H. S.; Preuss, M.; Waller, M. P., Nature 2018, 555, 604. https://doi.org/10.1038/nature25978

Unreasonable Reactions proposed by BFS

Another retro synthesis proposed by 3N-MCTS

3N-MCTS versus heuristic BFS routes
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3N-MCTS (Waller, 2018)

Model Performance Evaluation

Another retro synthesis proposed by 3N-MCTS

Parsy, C. C.; Alexandre, F.-R.; Bidau, V.; Bonnaterre, F.; Brandt, G.; Caillet, C.; Cappelle, S.; Chaves, D.; Convard, T.; Derock, M.; Gloux, D.; Griffon, Y.; Lallos, L. B.; Leroy, F.; Liuzzi, M.; Loi, A.-G.; 
Moulat, L.; Chiara, M.; Rahali, H.; Roques, V.; Rosinovsky, E.; Savin, S.; Seifer, M.; Standring, D.; Surleraux, D., Bioorg. Med. Chem. Lett. 2015, 25, 5427. https://doi.org/10.1016/j.bmcl.2015.09.009

Segler, M. H. S.; Preuss, M.; Waller, M. P., Nature 2018, 555, 604. https://doi.org/10.1038/nature25978

Medicinal Chemistry Route of IDX320 Analogs (Idenix / Merck, 2015)
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Summary: AIs for Synthesis Planning

Model LHASA Chematica 3N-MCTS

Architecture Expert System Hybrid Expert-NN Neural Network

Database 2k-Scale rules
100k-Scale encoded rules
+ Extractions from Reaxys

Extractions from Reaxys

Search Algorithm BFS BFS MCTS

Work Flow
Step-by-step 
Interactive

Metric-dependent
Automatic

Automatic

Scoring Chemist Score Function Score Function

Data Filtration - Semi-supervised Learning In-scope Filter NN

Stereochemistry? Yes Yes Not Quantitatively

Natural Products? No (Over Simplification) Yes No (Sparsity)

Turing Test - Passed -

Other Limitation - Expensive No Condition Prediction
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Newhouse, T.; Zhang, P.; Eun, J.; Elkin, M.; Zhao, Y.; Cantrell, R. ChemRxiv 2021.
https://doi.org/10.26434/chemrxiv-2021-41d5z

Library 
Preparation

Feature 
Extraction

Modeling

Experimental 
Verification

Newhouse, 2021
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Newhouse, T.; Zhang, P.; Eun, J.; Elkin, M.; Zhao, Y.; Cantrell, R. ChemRxiv 2021.
https://doi.org/10.26434/chemrxiv-2021-41d5z

99 reactions
0 to 90% yields

evenly distributed

n n

DFT Calculation for
physical descriptors

sp3-centered radicals
intramolecular cyclization; onto a pendant olefin

Supervised Models
Input X: descriptors of intermediates 

before and after cyclization 
Input Y: yields

Statistically Inspired Modification of 
the Partial Least Squares

k-Nearest Neighbors Random Forest neural network 
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Newhouse, T.; Zhang, P.; Eun, J.; Elkin, M.; Zhao, Y.; Cantrell, R. ChemRxiv 2021.
https://doi.org/10.26434/chemrxiv-2021-41d5z

Yields are randomly shuffled 
across the dataset

Chemically meaningful descriptors 
are replaced with randomly 

generated values

With an additional 26 new examples of 
6-endo radical cyclization

It is like:

Substrate 1 Substrate 2 Catalyst “Anti-yield”

X Y SIMPLS 20.6

X Y kNN 19.4

X Y RF 16.8

X Y NNET 14.0

X - NNET 29.3

- Y NNET 34.1

Substrate Scope NNET 17.5
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Newhouse, T.; Zhang, P.; Eun, J.; Elkin, M.; Zhao, Y.; Cantrell, R. ChemRxiv 2021.
https://doi.org/10.26434/chemrxiv-2021-41d5z

1. Transformation: 
Known mechanism, intramolecular reaction, 
(maybe) insignificant solvent effects 

2. Library Preparation:
Several structural restrictions

3. Feature Extraction:
Electronic structure-related descriptors

3. Model:
One-hidden-layer neural network


